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Experiences, whether they be learning in a classroom, a stressful event, or ingestion of a psychoactive substance, impact the

brain by modifying the activity and organization of specific neural circuitry. A major mechanism by which the neural activity

generated by an experience modifies brain function is via modifications of synaptic transmission; that is, synaptic plasticity.

Here, we review current understanding of the mechanisms of the major forms of synaptic plasticity at excitatory synapses in

the mammalian brain. We also provide examples of the possible developmental and behavioral functions of synaptic plasticity

and how maladaptive synaptic plasticity may contribute to neuropsychiatric disorders.
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INTRODUCTION

One of the most important and fascinating properties of the
mammalian brain is its plasticity; the capacity of the neural
activity generated by an experience to modify neural circuit
function and thereby modify subsequent thoughts, feelings,
and behavior. Synaptic plasticity specifically refers to the
activity-dependent modification of the strength or efficacy
of synaptic transmission at preexisting synapses, and for
over a century has been proposed to play a central role in
the capacity of the brain to incorporate transient experi-
ences into persistent memory traces. Synaptic plasticity is
also thought to play key roles in the early development of
neural circuitry and evidence is accumulating that impair-
ments in synaptic plasticity mechanisms contribute to
several prominent neuropsychiatric disorders. Thus, eluci-
dating the detailed molecular mechanisms underlying
synaptic plasticity in any number of different brain regions
is critical for understanding the neural basis of many
aspects of normal and pathological brain function.

Given the diversity of the functions ascribed to synaptic
plasticity, it is not surprising that many forms and
mechanisms of synaptic plasticity have been described.
Synaptic transmission can be either enhanced or depressed
by activity, and these changes span temporal domains
ranging from milliseconds to hours, days, and presumably
even longer. Furthermore, virtually all excitatory synapses

in the mammalian brain simultaneously express a number
of different forms of synaptic plasticity. Here, we attempt to
provide a broad overview of the mechanisms of the most
prominent forms of plasticity observed at excitatory
synapses in the mammalian brain. After briefly reviewing
short-lasting forms of synaptic plasticity, we will emphasize
current understanding of the cellular mechanisms and
possible functions of the class of phenomena commonly
termed long-term potentiation (LTP) and long-term depres-
sion (LTD).

SHORT-TERM SYNAPTIC PLASTICITY

Numerous forms of short-term synaptic plasticity, lasting
on the order of milliseconds to several minutes, have been
observed at virtually every synapse examined in organisms
ranging from simple invertebrates to mammals (Zucker and
Regehr, 2002). These are thought to play important roles in
short-term adaptations to sensory inputs, transient changes
in behavioral states, and short-lasting forms of memory.
Most forms of short-term synaptic plasticity are triggered
by short bursts of activity causing a transient accumulation
of calcium in presynaptic nerve terminals. This increase in
presynaptic calcium in turn causes changes in the
probability of neurotransmitter release by directly modify-
ing the biochemical processes that underlie the exocytosis
of synaptic vesicles.
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depressed relative to the response to the first stimulus (Katz
and Miledi, 1968; Zucker and Regehr, 2002). Paired-pulse
depression is commonly observed at all synapses at short
(less than 20 ms) interstimulus intervals, and most probably
results from inactivation of voltage-dependent sodium or
calcium channels or from a transient depletion of the
release-ready pool of vesicles docked at the presynaptic
terminal. Many synapses exhibit paired-pulse facilitation at
longer interstimulus intervals (20–500 ms). A simple
explanation for this phenomenon is that the residual
calcium left over from the invasion of the first action
potential contributes to additional release during the second
stimulation, but it is likely that additional mechanisms are
involved. These may involve activation of protein kinases
that modulate the activity of presynaptic phosphoproteins.
For example, mice in which the presynaptic phosphoprotein
synapsin (De Camilli et al, 1990) has been knocked out,
exhibit abnormal short-term plasticity (Rosahl et al, 1993,
1995).

Whether a synapse exhibits paired-pulse facilitation or
depression depends on the recent history of activation of
the synapse. Because these forms of plasticity largely result
from changes in the probability of transmitter release (p),
synapses that begin with a very high p tend to depress their
response to the second pulse (Dobrunz and Stevens, 1997).
In contrast, synapses with a low initial p normally exhibit an
increase in p in response to the second stimulus. Consistent
with this idea, manipulations that decrease p (eg, activation
of presynaptic autoreceptors) almost always cause an
increase in the magnitude of paired-pulse facilitation, or
even a conversion of paired-pulse depression to facilitation.
Thus, the same synapse can display either facilitation or
depression, depending on its recent history of activation
and modulation.

Facilitation and Depression Following Trains of
Stimuli

Longer-lasting forms of plasticity are observed following
repetitive or tetanic stimulation of synapses with prolonged
(approximately 200 ms to 5 s) trains of stimulation applied
at high frequencies (10–200 Hz) (Zucker and Regehr, 2002).
Augmentation and post-tetanic potentiation (PTP) describe
an enhancement of transmitter release lasting from seconds
(augmentation) to several minutes (PTP). They also involve
an increase in the probability of transmitter release in
response to an action potential due, in large part, to the
buildup of calcium concentration in the presynaptic
terminal during the stimulus trains. This residual calcium
may combine with the calcium influx elicited by the
subsequent single action potential to enhance directly the
release of neurotransmitter, or may lead to biochemical
modifications of proteins in the presynaptic terminal
(Magleby and Zengel, 1982; Zucker and Regehr, 2002).

At some synapses, repetitive activation leads to depres-
sion that can last for several seconds or even minutes (Betz,
1970; Zucker and Regehr, 2002). As in paired-pulse
depression, this generally occurs in synapses that exhibit a
high probability of release, and is thought to result, at least
in part, from a transient depletion of the release-ready pool
of synaptic vesicles. The decrease in synaptic strength can
also arise from the release of modulatory substances from

the activated presynaptic terminals, postsynaptic cells, or
even neighboring cells, initiating a signaling cascade that
leads to inhibition of the presynaptic release machinery.
Finally, a postsynaptic mechanism of short-term plasticity
may involve desensitization of ligand-gated receptors,
making the target neuron less sensitive to neurotransmitter.
A key characteristic of depression at many synapses is use
dependence. Higher levels of transmission are associated
with larger depression, and reduction of baseline transmis-
sion (eg, by reducing external calcium concentration)
relieves depression.

Modulation of Transmission by Presynaptic
Receptors

Most presynaptic terminals possess a number of different
types of metabotropic G-protein-coupled receptors, as well
as ionotropic receptors (MacDermott et al, 1999). The
probability of transmitter release, a significant factor in
defining synaptic strength, is controlled in part by the
occupancy of these receptors, which in turn is set by the
extracellular concentrations of their agonists. In some cases,
tonic levels of endogenous ligands are sufficient to partially
activate the receptors. Nonetheless, synaptic activity can
further increase receptor occupancy by transiently elevating
the concentration of various presynaptic neuromodulators
(Thompson et al, 1993; Miller, 1998). Depending on their
specific properties, activation of these receptors can either
enhance or depress synaptic transmission.

Via the release of a number of different neuromodulators,
postsynaptic cells can also influence the release of
transmitter from presynaptic terminals. A common scenar-
io is that in response to strong postsynaptic depolarization,
dendrites release retrograde messengers that act through G-
protein-coupled receptors located on presynaptic terminals
to influence neurotransmitter release. Retrograde messen-
gers that have been identified in specific cell types include
dopamine, dynorphin, glutamate, GABA, nitric oxide,
brain-derived neurotrophic factor (BDNF), and oxytocin
(Drake et al, 1994; Kombian et al, 1997; Llano et al, 1991;
Naggapan and Lu, 2005; Nugent et al, 2007; Pitler and Alger,
1992; Zilberter, 2000; Zilberter et al, 1999). Although
postsynaptic, calcium-dependent fusion of vesicles is one
common mechanism for the release of retrograde messen-
gers, they can also released by non-vesicular mechanisms.
For example, a widespread, extensively studied system for
mediating retrograde synaptic signaling involves the post-
synaptic release of endogenous cannabinoids, such as
anandamide and 2-arachidonoylglycerol, which are pro-
duced upon demand by cleavage of phospholipids and are
sensed by CB1 receptors on presynaptic terminals. The
mechanisms of endocannabinoid release are unclear and
may involve a transporter, which facilitates diffusion across
the plasma membrane (Chevaleyre et al, 2006) Such
retrograde signaling by postsynaptic release of endocanna-
binoids can be initiated by strong depolarization or
activation of postsynaptic metabotropic receptors and has
been shown to transiently suppress inhibitory and excita-
tory synapses in several brain regions (Chevaleyre et al,
2006). Importantly, in the striatum, there is a form of LTD
(to be discussed below) that is triggered by the release of
endocannabinoids.
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Involvement of Glia in Short-Term Plasticity

There is growing realization that glia may be involved in
some forms of short-term plasticity (Araque et al, 2001;
Haydon, 2001). With their intimate association with
synapses, astrocytes and perisynaptic Schwann cells are
well positioned to regulate synapses. They have an
established role in clearance of neurotransmitter and may
participate in synaptic plasticity by controlling the speed
and extent of such clearance (Bergles et al, 1999; Danbolt,
2001). This can in turn impact on the degree of postsynaptic
receptor activation and desensitization. Another way that
glia may be involved in synaptic plasticity is by sensing
extracellular messengers and then releasing substances that
in turn can directly affect synaptic efficacy (Araque et al,
2001; Haydon, 2001). For example, glia express many
different neurotransmitter receptors (eg, glutamate recep-
tors), which when activated result in the release of
substances (eg, ATP) that can then act on presynaptic
terminals to regulate neurotransmitter release.

Functions of Short-Term Synaptic Plasticity

Short-term synaptic plasticity was originally established as
behaviorally important from studies of simple organisms
such as Aplysia (Kandel and Tauc, 1965). In the mammalian
brain, an important consequence of short-term synaptic
plasticity is to influence the information processing
function of synapses, enabling them to act as filters with a
wide range of properties. For example, synapses with a low
initial probability of release function as high-pass filters,
since they will facilitate during high-frequency action
potential bursts while low-frequency bursts will not be
transmitted with the same efficacy. In contrast, synapses
with a high initial probability of release function as low-pass
filters, since they will depress during high-frequency bursts
but will reliably relay low-frequency activity (Abbott and
Regehr, 2004). The filtering characteristics of a synapse can
be adjusted through modulation of the initial release
probability. This most commonly occurs due to the release
of neuromodulators that, via activation of presynaptic
receptors, reduce the probability of release. This changes
the filtering characteristics of the synapse, causing facilita-
tion to become predominant over depression. In this way,
presynaptic inhibition can convert a synapse from a low-
pass to a high-pass filter.

LONG-TERM SYNAPTIC PLASTICIY

It is widely believed that experience of any sort modifies
subsequent behavior at least in part through activity-
dependent, long-lasting modifications of synaptic strength.
The brain encodes external and internal events as complex,
spatio-temporal patterns of activity in large ensembles
of neurons that can be conceptualized as ‘neural circuits’.
A key feature defining the behavior of any given neural
circuit is the pattern of synaptic weights that connect
the individual neurons that comprise the circuit. A corollary
to this hypothesis is that new information is stored
(ie, memories are generated) when activity in a circuit
causes a long-lasting change in the pattern of synaptic

weights. This idea was put forward over 100 years ago
by the Spanish Nobel laureate Santiago Ramon y Cajal,
and was further advanced in the late 1940s by Donald
Hebb, who proposed that associative memories are
formed in the brain by a process of synaptic modification
that strengthens connections when presynaptic activity
correlates with postsynaptic firing (Hebb, 1949). This
proposed function for synaptic plasticity, forming a
memory trace following the detection of two coincident
events, suggests an appealing cellular basis for behavioral
phenomena such as Pavlovian classical conditioning
(Pavlov, 1927).

Experimental support for the very existence of such
long-lasting, activity-dependent changes in synaptic
strength was lacking until the early 1970s when Bliss
and colleagues (Bliss and Gardner-Medwin, 1973; Bliss
and Lomo, 1973) reported that repetitive activation of
excitatory synapses in the hippocampus caused a potentia-
tion of synaptic strength that could last for hours or even
days. Over the last three decades, this phenomenon,
eventually termed LTP, has been the object of intense
investigation because it is widely believed that it provides an
important key to understanding some of the cellular and
molecular mechanisms by which memories are formed
(Martin et al, 2000; Pastalkova et al, 2006; Whitlock et al,
2006).

Although still considered prototypic, it is now clear that
hippocampal LTP is only one of several different forms of
long-term synaptic plasticity that exist in specific circuits in
the mammalian brain. Importantly, it is well established
that most synapses that exhibit LTP also express one or
more forms of LTD. Thus, a key concept is that synaptic
strength at excitatory synapses is bidirectionally modifiable
by different patterns of activity. Furthermore, it is now clear
that the terms ‘LTP’ and ‘LTD’ describe a class of
phenomena, the underlying mechanisms of which vary
depending on the circuits in which they function.

Additional forms of synaptic plasticity more recently
identified include homeostatic plasticity (Turrigiano
and Nelson, 2004) and metaplasticity (Abraham and
Bear, 1996). The major form of homeostatic plasticity is
‘synaptic scaling’, which describes phenomena whereby
the strength of all synapses on a given cell are adjusted in
response to prolonged changes in activity. Specifically,
prolonged decreases in overall activity cause a net scaling
up of total synaptic strengths while prolonged increases in
activity cause the opposite, a scaling down of synaptic
strengths. This form of plasticity operates on a much
slower timescale than LTP or LTD and may be parti-
cularly important during the development of neural
circuits. Metaplasticity refers to the effects that activity
can have on the capacity of synapses to express long-term
plasticity.

The most extensively studied and therefore prototypic
forms of synaptic plasticity are the LTP and LTD observed
in the CA1 region of the hippocampus (Figure 1), which are
triggered by activation of N-methyl-D-aspartate (NMDA)
receptors (NMDARs). We will therefore begin with a
discussion of their underlying mechanisms. We will then
proceed to reviewing some of the other prominent forms of
LTP and LTD for which mechanisms have been most firmly
established.
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NMDAR-Dependent LTP

No form of plasticity has generated more interest, or been
more extensively studied than LTP in the CA1 region of the
hippocampus. The excitement surrounding this phenom-
enon is due to compelling evidence from rodents, primates,
and humans associating the hippocampus with a neural
system involved in various forms of long-term memory
(Martin et al, 2000; Zola-Morgan and Squire, 1993).
Furthermore, several basic properties of LTP make it an
attractive cellular mechanism for rapid information storage.
Similar to memory, LTP can be generated rapidly and is
strengthened and prolonged by repetition. It also exhibits
cooperativity, associativity, and input specificity. (Nicoll
et al, 1988). Cooperativity means that LTP can be induced
by the coincident activation of a critical number of
synapses. Associativity is the capacity to potentiate a weak
input (a small number of synapses) when it is activated in
association with a strong input (a larger number of
synapses). As such, associativity is a cellular analogue of
classical conditioning and is an implicit property of the so-
called Hebbian synapse. Input specificity indicates that LTP
is elicited only at activated synapses and not at adjacent,
inactive synapses on the same postsynaptic cell. This feature

dramatically increases the storage capacity of individual
neurons since different synapses on the same cell can be
involved in separate circuits encoding different bits of
information.

A major technological advance in the study of synaptic
plasticity was the development of the hippocampal slice
preparation that made LTP accessible to rigorous experi-
mental analysis (Figure 1b). Indeed, the bulk of our
knowledge on the molecular mechanisms of LTP has been
derived from studies of LTP at excitatory synapses on CA1
pyramidal neurons in hippocampal slices. Similar or
identical forms of LTP have been observed at excitatory
synapses throughout the brain. Thus, the conclusions drawn
from the study of LTP in the hippocampal CA1 region are
often applied to other brain regions.

Triggering NMDAR-dependent LTP. A major advance in
the understanding of excitatory synaptic function and LTP
was the demonstration that two major types of ionotropic
glutamate receptors contribute to the postsynaptic response
at glutamatergic synapses, a-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) receptors (AMPARs) and
NMDARs (Figure 1c). These receptors are often (although
not always, as will be elaborated upon later) found
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Figure 1 NMDAR-dependent LTP and LTD at hippocampal CA1 synapses. (a) Sample experiments illustrating LTP and LTD in the CA1 region of the
hippocampus. Synaptic strength, defined as the initial slope of the field excitatory postsynaptic potential (fEPSP; normalized to baseline) is plotted as a
function of time. Left panel demonstrates LTP elicited by high-frequency tetanic stimulation (100 Hz stimulation for 1 s; black arrowhead). Right panel
illustrates LTD elicited by low-frequency stimulation (5 Hz stimulation for 3 min given twice with a 3 min interval; open arrow). Data traces were taken at the
times indicated by the numbers on the graphs (scale bar: 0.5 mV; 10 ms) (courtesy of W Morishita). (b) A schematic diagram of the rodent hippocampal slice
preparation, demonstrating the CA1 and CA3 regions as well as the dentate gyrus (DG). (SC¼ Schaffer collateral; MF¼mossy fiber). Typical electrode
placements for studying synaptic plasticity at Schaffer collateral synapses onto CA1 neurons are indicated (Stim¼ stimulating electrode; Rec¼ recording
electrode). (c) Model of synaptic transmission at excitatory synapses. During basal synaptic transmission (left panel), synaptically released glutamate binds
both the NMDA and AMPARs. Na + flows through the AMPAR channel but not through the NMDAR channel because of the Mg2 + block of this channel.
Depolarization of the postsynaptic cell (right) relieves the Mg2 + block of the NMDAR channel and allows both Na + and Ca2 + to flow into the dendritic
spine. The resultant increase in Ca2 + in the dendritic spine is necessary for triggering the subsequent events that drive synaptic plasticity.
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colocalized on individual dendritic spines. The AMPAR has
a channel that is permeable to monovalent cations (Na +

and K + ), and activation of AMPARs provides most of the
inward current that generates the excitatory synaptic
response when the cell is close to its resting membrane
potential. In contrast to AMPARs, the NMDAR exhibits a
strong voltage dependence because of the block of its
channel at negative membrane potentials by extracellular
magnesium (Mayer et al, 1984; Nowak et al, 1984). As a
result, NMDARs contribute little to the postsynaptic
response during basal synaptic activity. However, when
the cell is depolarized, magnesium dissociates from its
binding site within the NMDAR channel, allowing ions to
enter the cell. Importantly, unlike AMPAR channels, the
NMDAR channel allows calcium as well as sodium to enter
the postsynaptic dendritic spine (Figure 1c).

It is firmly established that the triggering (also termed the
induction) of LTP in the CA1 region requires activation of
NMDARs during strong postsynaptic depolarization leading
to a increase in postsynaptic calcium concentration,
which likely has to reach some critical threshold value to
activate the biochemical processes necessary for LTP
(Malenka, 1991; Malenka and Nicoll, 1993). Experimentally,
this is normally achieved by applying high-frequency
tetanic stimulation to the synapses or by use of a ‘pairing-
protocol’ during which the postsynaptic cell is directly
depolarized while low-frequency synaptic activation is
sustained. An additional method for induction of LTP (as
well as LTD) involves protocols that generate so-called
‘spike-time dependent plasticity’ (STDP; Dan and Poo, 2006;
Markram et al, 1997). In studies of STDP, LTP is induced
if afferent stimulation generates a synaptic response within
a discrete time window prior to the firing of the
postsynaptic cell.

Because its contribution to postsynaptic reponses re-
quires both presynaptic release of glutamate and post-
synaptic depolarization due to the simultaneous activation
of a population of synapses, the NMDAR is often referred to
as a ‘coincidence detector’. These properties of NMDARs
also explain the basic properties of LTP. Cooperativity and
associativity occur because of the requirement for multiple
synapses to be activated simultaneously to generate
adequate postsynaptic depolarization to remove the mag-
nesium block of the NMDAR. Input specificity is due to the
compartmentalized increase in calcium, which is limited to
the postsynaptic dendritic spine and does not influence
adjacent spines (Nicoll et al, 1988).

LTP signal transduction mechanisms. An extensive
number of signal transduction molecules have been
suggested to play a role in translating the calcium signal
that is required to trigger LTP into the long-lasting increase
in synaptic strength (Malenka and Bear, 2004; Sanes and
Lichtman, 1999). However, only for a handful of these has
compelling evidence of a mandatory role in LTP been
presented. A major limitation of much of the literature on
this topic stems from inadequate distinctions between
molecules that are key components of the molecular
machinery directly responsible for the triggering of LTP
(‘mediators’), and those molecules which may modulate
the ability to generate LTP, or play a permissive role
(‘modulators’). Some basic criteria that can be suggested for

defining the role of a protein as a mediator of LTP induction
are: (1) blocking the activation of the molecule during LTP
induction blocks LTP; and (2) activation of the molecule
induces a potentiation of synaptic transmission, which
occludes further synaptic induction of LTP.

Strong evidence indicates that calcium/calmodulin
(CaM)-dependent protein kinase II (CaMKII) fulfills these
requirements and is a key component of the molecular
machinery for LTP. CaMKII undergoes autophosphoryla-
tion after the triggering of LTP (Barria et al, 1997; Fukunaga
et al, 1995), and LTP induction was prevented both in
knockout mice lacking a critical CaMKII subunit (Silva
et al, 1992), and in knock-in animals in which endogenous
CaMKII was replaced with a form lacking the autopho-
sphorylation site (Giese et al, 1998). Furthermore, inhibition
of CaMKII activity by directly loading postsynaptic cells
with peptides that impair CaMKII function blocks LTP
(Malenka et al, 1989; Malinow et al, 1989), whereas acutely
increasing the postsynaptic concentration of active CaMKII
increases synaptic strength and occludes LTP (Lledo et al,
1995; Pettit et al, 1994).

Several other kinases have been implicated in the
triggering of LTP, but the experimental evidence supporting
their role is not as well substantiated as that for CaMKII.
Activation of the cyclic adenosine monophosphate-depen-
dent protein kinase (PKA), perhaps by the activation of a
calmodulin-dependent adenylyl cyclase, has been suggested
to boost the activity of CaMKII indirectly by decreasing
competing protein phosphatase activity (Blitzer et al, 1998;
Lisman, 1989; Makhinson et al, 1999). This presumably
happens by phosphorylation of inhibitor 1, an endogenous
inhibitor of protein phosphatase 1 (PP1). The extracellular
signal-regulated kinase (Erk)/mitogen-activated protein
kinase (MAPK) pathway has also been suggested to be
important for LTP, as well as some forms of learning and
memory (Sweatt, 2004; Thomas and Huganir, 2004). In
addition, Src kinase has been implicated in the enhance-
ment of NMDAR function during LTP induction (Kalia
et al, 2004). Finally, protein kinase C and in particular the
atypical PKC isozyme, PKMz, has received attention
because this isozyme is rapidly expressed upon induction
of LTP and recent studies have implicated PKMz in the
maintenance of the late phase of LTP both in hippocampal
slices and in vivo (Hrabetova and Sacktor, 1996; Ling et al,
2002; Pastalkova et al, 2006; Serrano et al, 2005).

Obviously, it remains a very challenging task to be able to
definitively identify the key intracellular signaling cascades
responsible for the triggering of LTP. Recent technical
advances in mass spectrometric techniques for the profiling
of post-transcriptional modifications in mixed populations
of proteins, as well as the practicality of RNAi approaches
for knockdown of candidate proteins, should help further
characterize the major LTP players and their dynamic
interplay.

Expression mechanisms of LTP. In the past, a major point
of contention was whether LTP was primarily expressed
postsynaptically as a change in AMPAR properties or
presynaptically, as a change in the probability of transmitter
release. This latter expression mechanism garnered sig-
nificant attention because it required the production of a
retrograde messenger that was released by postsynaptic
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cells and acted on presynaptic terminals (for a thorough
review of the evidence for either locus of expression, see
Nicoll, 2003). To a large extent, this controversy has been
resolved, with the emerging consensus that the major
mechanism of expression of LTP at hippocampal CA1
synapses involves an increase in the numbers of AMPARs
within the postsynaptic density, driven through activity-
dependent changes in AMPAR trafficking (Bredt and Nicoll,
2003; Derkach et al, 2007; Malenka and Nicoll, 1999;
Malinow and Malenka, 2002; Song and Huganir, 2002).
A major contribution to ending the controversy was the
proposal of the silent synapse hypothesis and the evidence
supporting it (Durand et al, 1996; Isaac et al, 1995; Liao
et al, 1995; Malenka and Nicoll, 1997). Silent synapses are
synapses that contain only NMDARs with few or no
AMPARs, such that at normal resting membrane potentials
these synapses exhibit no detectable postsynaptic responses
to synaptically released glutamate. The ‘unsilencing’ of these
synapses during the induction of LTP is thought to occur
through the incorporation of AMPARs into the postsynaptic
plasma membrane. This hypothesis was quickly expanded
to include synapses that already contained AMPARs and
has led to a large investigative effort into the molecular
mechanisms regulating the trafficking of AMPARs (Bredt
and Nicoll, 2003; Collingridge et al, 2004; Malinow and
Malenka, 2002; Sheng and Kim, 2002; Song and Huganir,
2002).

Most AMPARs in the central nervous system are
tetramers comprised of four glutamate receptor subunits,
GluR1–GluR4. Although these subunits are highly homo-
logous, both the functional properties of AMPARs and their
trafficking has been suggested to depend on their subunit
composition (Collingridge et al, 2004; Derkach et al, 2007;
Malinow and Malenka, 2002). In the adult hippocampus,
two forms of AMPARs are thought to predominate: GluR1/
GluR2 heteromers and GluR2/GluR3 heteromers (Wenthold
et al, 1996). Based on clever overexpression studies, one
prominent hypothesis suggests that subunit-specific rules
govern the synaptic delivery of AMPARs (Hayashi et al,
2000; Passafaro et al, 2001; Shi et al, 2001). Specifically, it
has been suggested that the insertion of GluR1-containing
AMPARs into synapses is slow under basal conditions and
is strongly stimulated by NMDAR activation, whereas
insertion of GluR2/3 heteromeric receptors may occur
constitutively on a much more rapid timescale.

Where do these new AMPARs come from and how is their
trafficking regulated at a molecular level? Current evidence
suggests that recycling endosomes in the dendrites contain
a reserve pool of AMPARs that are mobilized during LTP
via a process that requires the small GTP-binding protein,
Rab11a (Park et al, 2004) (Figure 2). Surprisingly, AMPARs
do not appear to be inserted directly into the postsynaptic
density (PSD) but rather are exocytosed at perisynaptic
sites. They then can laterally diffuse in the plasma
membrane and be trapped within the PSD due to their
interactions with so-called ‘slot proteins’, which function to
trap AMPARs and greatly reduce their lateral mobility.
Attractive candidates for these slot proteins are a family of
proteins found in the PSD termed MAGUKs (for mem-
brane-associated guanylate kinases). MAGUKS are defined
by their multiple protein interaction domains, most
importantly so-called PDZ domains. Prominent members

of the MAGUK family of PSD proteins include PSD-95,
SAP97, PSD-93, and SAP102 (Kim and Sheng, 2004;
Montgomery et al, 2004). PSD-95 has received the most
attention and its level appears to be particularly important
for controlling the number of AMPARs at individual
synapses as evidenced by the findings that overexpression
of PSD-95 increases synaptic strength and occludes LTP
(Ehrlich and Malinow, 2004; Stein et al, 2003), whereas
knockdown of PSD-95 decreases surface expression of
AMPARs and synaptic strength (Ehrlich et al, 2007; Schluter
et al, 2006).

The influence of PSD-95, as well as other MAGUKS (Elias
et al, 2006; Futai et al, 2007; Schluter et al, 2006), on
AMPARs was surprising given that PSD-95 was originally
isolated because of its strong interaction with NMDARs
(Kornau et al, 1995). Another major surprise was that
AMPARs do not directly bind to MAGUKs but rather do so
via a family of AMPAR auxiliary subunits termed trans-
membrane AMPAR regulatory proteins (TARPs). TARPs
are required for the delivery of AMPARs to the plasma
membrane at extrasynaptic sites (Chen et al, 2000; Nicoll
et al, 2006) and also influence their biophysical properties
(Tomita et al, 2005a). Importantly, they are also required
for the synaptic localization of AMPARs due to their direct
interaction with MAGUKs (Schnell et al, 2002).

The detailed molecular mechanisms by which activation
of protein kinases such as CaMKII lead to the synaptic
delivery of AMPARs remains to be determined. Phosphor-
ylation of AMPAR subunits themselves by CaMKII does not
appear critical (Esteban et al, 2003; Lee et al, 2003) although
other phosphorylation sites, such as the PKA or the PKC
sites on GluR1, may be important (Boehm et al, 2006;
Esteban et al, 2003). On the other hand, there is reasonable
evidence that phosphorylation of TARPs occurs following
CAMKII activation (Tsui and Malenka, 2006) and that this
may be critical for LTP (Tomita et al, 2005b). It is, however,
highly likely that AMPARs and TARPs are just a component
of a large complex of proteins, the phosphorylation of which
will be required for LTP expression.

LTP also appears to involve a phosphorylation-driven
increase in the single-channel conductance of AMPARs
themselves (Benke et al, 1998; Soderling and Derkach,
2000). Indeed, CaMKII phosphorylates Ser831 in the
intracellular C terminus of GluR1, resulting in a significant
increase in single-channel conductance of homomeric
GluR1 receptors (Derkach et al, 1999, 2007). However, one
important caveat of this conclusion is that synaptic GluR1-
containing AMPARs also contain GluR2, and in GluR1/2
heteromeric AMPARs, the enhanced conductance upon
phosphorylation by CaMKII is absent (Oh and Derkach,
2005).

Although the evidence to date suggests a more prominent
role for AMPAR exocytosis, the relative contribution of
AMPAR trafficking and changes in the biophysical proper-
ties of AMPARs to the increase in synaptic strength during
LTP are not well defined. One model for the successive
events occurring during the first hour of LTP involves
activation of calcium-dependent signal transduction path-
ways, notably CaMKII, resulting in phosphorylation of
GluR1-containing receptors and an increase in their single-
channel conductance. Roughly simultaneously, AMPARs
are translocated into the PSD via exocytosis and lateral
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movement within the plasma membrane. Most investigators
believe that the incorporation of AMPARs into the PSD is
the more important change because it appears to be
accompanied by structural changes in the dendritic spines
and synapses themselves, an attractive mechanism for
maintaining LTP (see below). There are also experimental
findings consistent with rapid presynaptic changes during
LTP, but the retrograde messenger that is responsible
remains elusive, one prominent possibility being BDNF
(Bramham and Messaoudi, 2005).

Maintaining LTP. Much of the work on NMDAR-
dependent LTP has focused on the mechanisms responsible
for its initial 30–60 min, to a large extent because of
technical limitations in the duration over which stable
electrophysiological recordings can be maintained. None-
theless, the mechanisms that allow LTP to persist for hours,
days, or even longer are of great importance. Like virtually
all cell biological phenomena, the persistence of LTP is
dependent upon new protein synthesis (Reymann and Frey,
2007). This so-called ‘late phase of LTP’ (defined as the
potentiation present more than 1–2 h after LTP induction)
is commonly assumed to depend upon local dendritic
protein synthesis, which supplies needed components to the
synapse (Sutton and Schuman, 2006), as well as transcrip-
tion in the nucleus (Zhou et al, 2006). The signaling to the
nucleus required for long-lasting LTP has been suggested to
depend on a number of protein kinases including PKA,
CaMKIV, and Erk-MAPK, which activate key transcription
factors that may include cAMP response element-binding

protein and immediate-early genes such as c-Fos and
Zif268/Egr-1 (Thomas and Huganir, 2004). These transcrip-
tional complexes presumably promote expression of
effector genes that are required for maintaining the synaptic
enhancement.

Several mRNAs can be found in dendrites, including
those of the AMPARs themselves, CaMKII, Arc, and
proteins which may function to regulate receptor trafficking
(Grooms et al, 2006; Job and Eberwine, 2001; Ju et al, 2004;
Mayford et al, 1996; Schuman et al, 2006; Steward and
Schuman, 2001). The trafficking of some of these mRNAs
and their local translation seems to be highly regulated by
activity. Furthermore, other components of the translational
machinery are found in or adjacent to dendritic spines and
polyribosomes are recruited to spine heads following LTP
induction (Bourne et al, 2007). Thus, there is accumulating
evidence that the machinery to provide local, newly
synthesized proteins to synapses is available.

An intriguing hypothesis is that during the synaptic
activation to induce LTP a ‘synaptic tag’ is generated that
functions to capture or sequester plasticity related proteins,
which in turn are required to stabilize the increase in
synaptic strength (Frey and Morris, 1997). However, little is
known about the identity of the synaptic tag or the newly
synthesized proteins that are required to maintain LTP,
although it has been suggested that PKA, CAMKII, or PKMz
might function as the synaptic tag (Reymann and Frey,
2007; Sajikumar et al, 2005; Young et al, 2006).

A compelling possibility for a long-term maintenance
mechanism of LTP is the structural remodeling of

AMPARNMDAR

Endocytosis

Recycling

Exocytosis

AMPARNMDARAMPARNMDAR

Ca2+

CaMKII

Ca2+
Calcineurin 

PP1

LTP LTD

Rab11a

Figure 2 Model of AMPAR trafficking during LTP and LTD. In the basal state (depicted on top), receptors cycle between the postsynaptic membrane and
intracellular compartments. This is achieved through lateral mobility of the receptors out of the synapse into endocytic zones, where they are endocytosed
into early endosomes in a clathrin- and dynamin-dependent manner. Normally, the receptors are transferred to recycling endosomes and returned to the
plasma membrane by exocytosis, followed by lateral movement into the synapse where they are retained through interaction with MAGUKs. Following
induction of LTP, there is enhanced receptor exocytosis and stabilization at the synapse through a calcium-driven process that involves CAMKII and fusion of
recycling endosomes mediated by Rab11a. Following the induction of LTD, enhanced endocytosis at extrasynaptic sites occurs in a process that is calcium-
dependent and involves protein phosphatases, primarily calcineurin and protein phosphatases 1 (PP1). While in the basal state endocytosis is presumably
balanced by receptor recycling, following LTD receptors are retained within the cell, and perhaps degraded.
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potentiated synapses (Luscher et al, 2000). Spines come in a
variety of shapes and sizes, and can undergo rapid shape
changes that are influenced by activity (Yuste and
Bonhoeffer, 2001). Morphological changes which have been
reported to accompany LTP include growth of new
dendritic spines, enlargement of preexisiting spines and
their PSDs, and the splitting of single PSDs and spines into
two functional synapses (Abraham and Williams, 2003;
Matsuzaki et al, 2004; Yuste and Bonhoeffer, 2001). An
attractive model suggests that during LTP, recycling
endosomes contribute AMPAR subunits to the synapse, as
well as lipids and constituents which enlarge the synapse
(Lisman and Zhabotinsky, 2001; Luscher et al, 2000; Park
et al, 2004, 2006). At some later time point, there is likely a
concomitant increase in the presynaptic active zone, the size
of which always closely matches that of the PSD (Lisman
and Harris, 1993). This presynaptic re-modeling must
involve post- and presynaptic protein interactions with
likely candidates being cell adhesion molecules such as the
cadherins or neuroligin/neurexin interactions.

Summary. The current view of the mechanisms underlying
this form of LTP can be summarized as follows (Figure 2). A
large NMDAR-dependent increase in dendritic spine
calcium concentrations leads to activation of intracellular
signaling cascades involving a number of protein kinases,
most importantly CaMKII. This leads to an increase in the
single-channel conductance of synaptic AMPARs and more
importantly, promotes the incorporation of additional
AMPARs into the PSD. The new synaptic AMPARs are
stabilized through their TARP-mediated interaction with
PDZ domain-containing proteins such as PSD-95. In
parallel, structural changes within the synapse occur, such
that the size of the PSD and dendritic spine are increased.
This in turn drives an increase in the size of the presynaptic
active zone such that the potentiated synapses are
‘permanently’ enlarged. The maintenance of these changes
for more than a few hours depends on de novo transcription
as well as local dendritic protein synthesis, presumbably to
provide the synapses with a supply of the critical proteins
necessary for maintaining synaptic strength.

NMDAR-Dependent LTD

An important advance in the study of long-term synaptic
plasticity was the establishment of an experimentally
reproducible form of NMDAR-dependent LTD at excitatory
synapses on hippocampal CA1 pyramidal cells (Dudek and
Bear, 1992). This demonstrated that activity could bi-
directionally control synaptic strength (Mulkey and Malenka,
1992), thus providing support for the idea that memories or
experiences were encoded by the distribution of synaptic
weights in neural circuits, not simply by LTP. Shortly
thereafter, a similar form of LTD was observed at
neocortical synapses (Kirkwood et al, 1993) suggesting that
mechanistic studies in the hippocampal CA1 region could
provide insights that applied to excitatory synapses
throughout the brain. While that remains true to a large
extent, we now know that in addition to NMDAR-dependent
LTD, there are several other forms of LTD, which we will
discuss in later sections. Moreover, similar to LTP, evidence
is accumulating that LTD mechanisms may contribute to a

large number of brain phenomena including experience-
dependent development, learning and memory, addiction,
and neurological disorders such as Alzheimer’s disease and
Parkinson’s disease (Malenka and Bear, 2004; Brebner et al,
2005; Kreitzer and Malenka 2007; Hsieh et al, 2006).

Triggering NMDAR-dependent LTD. The typical protocol
for eliciting LTD involves prolonged repetitive low-
frequency stimulation (B900 stimuli at 1 Hz; Dudek and
Bear, 1992; Mulkey and Malenka, 1992), although the
number of stimuli can be dramatically reduced and the
frequency changed if the postsynaptic neuron is modestly
depolarized (to B�50 mV), partially relieving the Mg2 +

block of the NMDAR (Selig et al, 1995). NMDAR-dependent
LTD can also be induced by correctly timing the activation
of presynaptic axons and the postsynaptic neuron (STDP;
(Dan and Poo, 2006).

Like LTP, LTD is input-specific and depends upon an
NMDAR-dependent increase in postsynaptic calcium
(Mulkey and Malenka, 1992). The predominant current
hypothesis is that quantitative properties of the postsynap-
tic calcium signal within dendritic spines dictates whether
LTP or LTD is triggered, with LTD requiring a modest
increase in calcium (Cummings et al, 1996), whereas LTP
requires a increase beyond some critical threshold value
(Malenka and Nicoll, 1993). The temporal characteristics of
the increase in calcium may also be important since
changing the relative timing between pre- and postsynaptic
activation by just a few tens of milliseconds can reverse the
direction of synaptic modification (Dan and Poo, 2006).
Differential buffering of postsynaptic calcium levels has
been reported to enable a transition between LTP and LTD
(Harney et al, 2006; Nishiyama et al, 2000). These findings
demonstrate the thin line that lies between synaptic activity
eliciting a potentiation vs a depression and provide support
to the idea that both LTP and LTD are utilized in parallel for
encoding experiences in vivo.

LTD signal transduction mechanisms. An influential
hypothesis for the signal transduction pathway triggering
LTD suggested that while LTP was due to the preferential
activation of CaMKII, LTD involves activation of a calcium-
dependent protein phosphatase cascade consisting of the
calcium/calmodulin-dependent phosphatase calcineurin
(also known as protein phosphatase 2B), PP1, and a
phosphoprotein termed inhibitor-1 which functions to
inhibit PP1 until it is dephosphorylated by calcineurin
(Lisman, 1989). Consistent with this hypothesis, postsynap-
tic inhibition of these phosphatases prevents LTD (Kirk-
wood and Bear, 1994; Morishita et al, 2001; Mulkey et al,
1994, 1993), whereas directly loading CA1 pyramidal cells
with PP1 enhances LTD (Morishita et al, 2001). Although
signaling proteins other than phosphatases have been
suggested to play key roles in LTD (Bolshakov et al, 2000;
Dan and Poo, 2006; Palmer et al, 2005; Peineau et al, 2007),
the hypothesis that LTP involves preferential activation of
protein kinases while LTD involves activation of phospha-
tases remains predominant.

LTD has been found to correlate with dephosphorylation
of postsynaptic PKC and PKA substrates without a
detectable change in CaMKII substrate phosphorylation
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(Hrabetova and Sacktor, 1996; Kameyama et al, 1998; Lee
et al, 2000, 1998. The evidence in support of a role for
dephosphorylation of PKA substrates during LTD is
particularly convincing, as postsynaptic inhibition of PKA,
or its displacement from intracellular anchoring proteins,
cause a rundown of synaptic transmission that occludes
LTD. The mechanism underlying specific dephosphoryla-
tion of PKA substrates during LTD could involve the
NMDAR-dependent recruitment of PP1 to synapses (Mor-
ishita et al, 2001) or the selective loss of PKA from synapses
(Gomez et al, 2002; Snyder et al, 2005). Consistent with a
role for PKA, LTD is associated with selective depho-
sphorylation of Ser845 on GluR1, a PKA substrate site (Lee
et al, 2000). This dephosphorylation event may contribute
to the expression of LTD, as it decreases the AMPAR open-
channel probability (Banke et al, 2000), and mice with
knock-in alanine substitution of both Ser845 and Ser831 (a
CaMKII-substrate site) exhibit impaired NMDAR-depen-
dent LTD (Lee et al, 2003).

Expression mechanisms of LTD. The demonstration of
silent synapses and their conversion to functional synapses
during LTP by the incorporation of AMPARs (Malenka and
Nicoll, 1997) immediately gave credence to the idea that the
opposite might happen during LTD, that is, the removal or
endocytosis of AMPARs. Consistent with this idea, it was
demonstrated that pharmacological manipulations of activ-
ity in cultured neurons (Carroll et al, 1999; Lissin et al,
1998) or application of glutamate receptor agonists (Beattie
et al, 2000; Carroll et al, 1999; Ehlers, 2000; Heynen et al,
2000; Lin et al, 2000; Lissin et al, 1998) could cause a loss of
AMPARs from synapses due to dynamin- and clathrin-
dependent endocytosis (Carroll et al, 2001; Collingridge
et al, 2004; Derkach et al, 2007; Malinow and Malenka,
2002). Furthermore, postsynaptic inhibition of dynamin
activity impaired LTD in CA1 pyramidal cells in slices (Lee
et al, 2002; Luscher et al, 1999; Morishita et al, 2005). Based
in large part on these sorts of observations, the current
leading hypothesis is that the expression mechanism of
NMDAR-dependent LTD is due to activity-dependent
endocytosis of synaptic AMPARs (Bredt and Nicoll, 2003;
Collingridge et al, 2004; Derkach et al, 2007; Malenka and
Bear, 2004; Malinow and Malenka, 2002) (Figure 2).

The precise molecular mechanisms by which endocytosis
of AMPARs occurs during LTD is still not clear but one
likely scenario is that it involves dissociation of AMPARs
from their anchors within the PSD, followed by lateral
movement to the edge of the PSD where they undergo
clathrin- and dynamin-dependent endocytosis (Ashby et al,
2004; Blanpied et al, 2002; Groc et al, 2004). Consistent with
a key role for protein phosphatases, the endocytosis of
AMPARs is regulated by calcium-dependent dephosphor-
ylation (Beattie et al, 2000; Carroll et al, 2001; Ehlers, 2000).
Key substrates for facilitating endocytosis may include
components of the endocytic machinery (Carroll et al, 2001;
Lai et al, 1999; Slepnev et al, 1998) as well as AMPAR
subunits themselves (Ehlers, 2000). Following endocytosis,
AMPARs exhibit increased colocalization with the clathrin
adaptor protein AP2 (Carroll et al, 1999), an interaction that
may be promoted by the Ca2 + -dependent adaptor protein
hippocalcin (Palmer et al, 2005).

Consistent with a role for ‘slot proteins’ in the regulation
of AMPAR surface levels, LTD has been reported to depend
on PP1-dependent dephosphorylation of stargazin (Tomita
et al, 2005b). This dephosphorylation might permit the
dissociation of stargazin from PSD-95 and its diffusion out
of the PSD, enabling LTD through loss of synaptic AMPARs
(Ziff, 2007). Ubiquitination (Colledge et al, 2003) or
depalmitoylation (El-Husseini et al, 2002) of PSD-95 has
also been suggested to be critical for agonist-induced
endocytosis of AMPARs but whether these events are
required for synaptically induced LTD has not been
determined. Additional proteins implicated in AMPAR
endocytosis include the AMPAR interacting protein PICK1
(Hanley and Henley, 2005; Kim et al, 2001), the small
GTPases Rap1 (Zhu et al, 2002, 2005) and Rab5 (Brown
et al, 2005), and a protein termed cpg2 (Cottrell et al, 2004).

It has been suggested that particular AMPAR subunits,
specifically GluR2, may be especially important for the
endocytosis of AMPARs during LTD, in part because of its
direct interaction with AP2 (Lee et al, 2002). One key
finding consistent with this hypothesis is that peptides that
selectively interfere with this interaction have been reported
to inhibit LTD (Lee et al, 2002). However, AP2 can bind
other AMPAR subunits (Kastning et al, 2007; Lee et al,
2002) and LTD is still observed in hippocampal slices
obtained from mice lacking GluR2 as well as GluR2 and
GluR3 (Jia et al, 1996; Meng et al, 2003). Thus, the
importance of specific AMPAR subunits for LTD is not
firmly established.

Summary. A current simplified view of the mechanisms
underlying NMDAR-dependent LTD can be summarized as
follows (Figure 2): a modest increase in postsynaptic
calcium concentration within dendritic spines due to
modest activation of NMDARs leads to preferential activa-
tion of protein phosphatases (as well as a few other key
signaling proteins). This leads to the dissociation of
AMPARs from their molecular scaffolds in the PSD and
their lateral movement to endocytic zones on the periphery
of the PSD, where they are endocytosed and potentially
degraded. We have not discussed the maintenance of LTD
because there is little work on this topic. There is evidence
that LTD is accompanied by a shrinkage in the size of
dendritic spines (Nagerl et al, 2004; Zhou et al, 2004) and
that this may be due to the loss of AMPARs (Hsieh et al,
2006). Furthermore, similar to LTP, protein translation may
be needed for the long-term stable expression of LTD
(Pfeiffer and Huber, 2006). Thus, it is generally believed that
the activity-dependent trafficking of AMPARs into and out
of synapses during LTP and LTD, respectively, is the first
critical step in the morphological growth or shrinkage of
synapses and that these structural modifications are the
mechanisms by which bidirectional changes in synaptic
strength are maintained. Indeed, the size of individual
synapses correlates closely with the number of AMPARs
they contain (Matsuzaki et al, 2001; Nusser et al, 1998;
Takumi et al, 1999).

Presynaptic LTP

Although the spotlight has been on NMDAR-dependent LTP
for over 30 years, it is clear that a mechanistically distinct
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form of plasticity coexists in the hippocampus at the so-
called mossy fiber synapses, the synapses between the axons
of dentate gyrus granule cells (ie, mossy fibers) and the
proximal apical dendrites of CA3 pyramidal cells (Nicoll
and Malenka, 1995; Nicoll and Schmitz, 2005). Mossy fiber
LTP (MF-LTP) is of increasing interest due to the fact that it
appears to be a prototype for mechanistically similar forms
of LTP found in several other brain regions including the
thalamus at corticothalamic synapses (Castro-Alamancos
and Calcagnotto, 1999), the cerebellum at parallel fiber-
Purkinje cell synapses (Linden, 1997; Salin et al, 1996), and
perhaps in the striatum at cortico-striatal synapses (Spencer
and Murphy, 2002). Thus, like NMDAR-dependent LTP,
this form of LTP may play multiple functional roles in the
brain.

In contrast to NMDAR-dependent LTP, the triggering and
expression of this form of LTP is thought to be solely or
predominantly presynaptic, thus we refer to it as presynap-
tic LTP. While somewhat controversial, most experimental
evidence suggests that presynaptic LTP is triggered by high-
frequency tetanic stimulation, which causes a large, activity-
dependent increase in calcium concentration within pre-
synaptic axon terminals (Nicoll and Malenka, 1995; Nicoll
and Schmitz, 2005; Zalutsky and Nicoll, 1990). Presynaptic
voltage-dependent calcium channels are the critical source
of the calcium increase, although the triggering of this LTP
at MF synapses can be facilitated by the activation of
presynaptic kainate receptors, particularly GluR6 (Lauri
et al, 2001; Schmitz et al, 2003). Results from pharmaco-
logical manipulations and knockout mice are all consistent
with the hypothesis that the increase in presynaptic calcium
activates a calcium/calmodulin-dependent adenylyl cyclase.
This leads to a increase in presynaptic cAMP and activation
of PKA, which phosphorylates critical presynaptic sub-
strates to cause a long-lasting enhancement in transmitter
release (Nicoll and Malenka, 1995; Nicoll and Schmitz,
2005). Although this sequence of events is consistent with
most of the results from all of the synapses that have been
reported to express presynaptic LTP, surprisingly, a very
different postsynaptic induction mechanism has been
proposed to occur at MF synapses. This involves trans-
synaptic interactions between postsynaptic EphB receptor
tyrosine kinases and presynaptic B-Ephrin ligands leading,
via an unknown mechanism, to a long-lasting enhancement
of transmitter release (Armstrong et al, 2006; Contractor
et al, 2002).

Despite some controversy concerning the mechanism
underlying the induction of presynaptic LTP at MF
synapses, there is general agreement that its expression is
due to an increase in neurotransmitter release. One
mechanism for mediating a long-lasting increase in
transmitter release is to enhance the calcium influx into
the presynaptic terminal when it is invaded by an action
potential; for example via a long-lasting modulation of
presynaptic calcium channels. However, direct imaging of
the action potential-dependent increase in presynaptic
calcium in MF boutons indicates that no change occurs
following the triggering of MF-LTP (Kamiya et al, 2002;
Regehr and Tank, 1991; Reid et al, 2004).

The other major mechanism for enhancing transmitter
release is via some modulation of the machinery responsible
for synaptic vesicle exocytosis. In this context, the focus has

been on presynaptic proteins known to be substrates for
PKA. Because presynaptic terminals are relatively inacces-
sible, an important approach has been examining knockout
mice lacking specific presynaptic proteins. Mice lacking
synapsins exhibited normal MF-LTP (Spillane et al, 1995)
indicating that these prominent PKA substrates were not
necessary. In contrast, knockout animals lacking the
synaptic vesicle protein Rab3A, a small GTPase (Castillo
et al, 1997; Lonart et al, 1998), or its binding partner, the
active zone protein Rim1a (Castillo et al, 2002; Powell et al,
2004) lack both MF-LTP as well as presynaptic LTP in the
cerebellum. Rim1a is a substrate of PKA and thus these
findings suggest that presynaptic LTP may require a GTP-
dependent interaction between Rab3a and Rim1a at the
interface of synaptic vesicles and the active zone. Indeed,
using cultures of cerebellar neurons in which presynaptic
LTP can be elicited, the critical residue phosphorylated by
PKA in Rim1a has been identified (Lonart et al, 2003). One
important caveat to this hypothesis, however, is that the
presynaptic enhancement of synaptic transmission seen
upon application of the adenylyl cyclase activator forskolin
is unaltered in knockout mice lacking Rab3a or Rim1a. This
provides a complication for the simple model implicating
Rim1a and Rab3a as the crucial mediators of the enhanced
transmission caused by presynaptic activation of PKA.

Metabotropic Glutamate Receptor-Dependent
LTD

Under the appropriate experimental conditions, low-fre-
quency stimulation of the Schaffer collateral/commissural
inputs to CA1 pyramidal cells can trigger, in addition to
NMDAR-dependent LTD, a mechanistically distinct form of
LTD, that is dependent upon activation of metabotropic
glutamate receptors (mGluRs; mGLUR LTD) (Anwyl, 2006;
Bolshakov et al, 2000; Malenka and Bear, 2004; Oliet et al,
1997). Various forms of mGluR LTD have been observed in
many brain regions, most notably at the parallel fiber to
Purkinje cell synapse (Ito, 1989; Linden and Connor, 1995).
This so-called cerebellar LTD is elicited when parallel fibers
are activated coincident with climbing fiber activation and
has been suggested to be particularly important for certain
forms of motor learning.

Typically, the induction of mGluR LTD in the CA1 region
of the hippocampus requires bursts of afferent stimulation
or paired-pulse stimulation at modest frequencies. Pre-
sumably, this increases the likelihood of activating the
extrasynaptic group I mGluRs that are required to trigger
this form of plasticity. mGluR LTD can also be elicited by
bath application of group I mGluR agonists such as DHPG
(Bellone and Luscher, 2005; Huber et al, 2000, 2001). Group
I mGluRs (mGluR1 and mGluR5) are defined by their
capacity to stimulate phosphoinositide hydrolysis and
thereby produce diacylglycerol and inositol triphosphate.
Although mGluR1 is the principal receptor implicated in the
induction of mGluR LTD in the ventral tegmental area
(VTA), cerebellum, and neostriatum, mGluR5 has been
implicated in the hippocampus, cortex, and nucleus
accumbens (Anwyl, 2006).

The intracellular signaling pathways responsible for
mGluR LTD have not been extensively examined. PKC
appears to be required for mGluR LTD in the cerebellum
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(De Zeeuw et al, 1998; Linden and Connor, 1991) and the
VTA (Bellone and Luscher, 2005), but perhaps not in the
hippocampus (Huang and Hsu, 2006). Other signaling
proteins suggested to be important for mGluR LTD include
the MAPKs p38, Erk, and Jnk (Gallagher et al, 2004; Li et al,
2007; Rush et al, 2002), tyrosine phosphatases (Huang and
Hsu, 2006; Moult et al, 2006), and phosphatidylinositol
3-kinase (Hou and Klann, 2004) but how these various
enzymes might lead to a long-lasting decrease in synaptic
strength is unknown.

Similar to NMDAR-dependent LTD, mGluR LTD in the
hippocampus and cerebellum appears to involve clathrin-
dependent endocytosis of AMPARs (Snyder et al, 2001;
Wang and Linden, 2000; Xiao et al, 2001). For cerebellar
mGluR LTD, a large body of work is consistent with a
specific molecular model in which mGluR activation due to
parallel fiber stimulation combined with calcium influx due
to climbing fiber activation results in activation of PKCa
and its targeting to synapses via the protein PICK1 (Jorntell
and Hansel, 2006; Perez et al, 2001; Steinberg et al, 2006).
PKCa then phosphorylates Ser880 on GluR2 causing GluR2
to dissociate from the AMPAR-binding proteins GRIP/ABP
and bind to PICK1. This then allows lateral diffusion of the
AMPARs and ultimately internalization (Chung et al, 2003;
Steinberg et al, 2006; Xia et al, 2000). This cascade of events
is significantly different than those believed to occur during
NMDAR-dependent LTD, pointing out that the molecular
mechanisms underlying apparently similar forms of plasti-
city may be cell type-specific. Indeed, mGluR LTD at
excitatory synapses onto dopamine cells in the VTA has
been suggested to involve a selective loss of AMPARs that
lack the GluR2 subunit (Bellone and Luscher, 2005, 2006),
rather than those that contain GluR2.

Another important feature of mGluR LTD, at least in the
hippocampus, is that it appears to be dependent on mGluR-
triggered protein synthesis (Hou and Klann, 2004; Huber
et al, 2000, 2001; Snyder et al, 2001). This link between
protein synthesis and mGluR LTD gained considerable
attention following the report that mice lacking the gene
encoding the fragile X mental retardation protein (FMRP)
exhibited enhanced mGluR LTD in both the hippocampus
(Huber et al, 2002) and the cerebellum (Koekkoek et al,
2005). These mice serve as a model for the Fragile X
syndrome in humans, an X-linked form of mental retarda-
tion, and exhibit several features of the human disorder
(Bear et al, 2004). Surprisingly, the enhanced mGluR LTD
observed in the FMRP knockout mice is independent of
protein synthesis and proteasomal degradation (Hou et al,
2006; Nosyreva and Huber, 2006), cellular processes that
appear crucial for mGluR LTD in wild-type mice. Never-
theless, this potential link between an mGluR-triggered
form of synaptic plasticity and Fragile X syndrome has
focused attention on mGluR antagonists as possible
therapeutic agents for this and other developemental
disorders (Bear et al, 2004).

There are also results consistent with a presynaptic locus
of expression for mGluR LTD (Anwyl, 2006; Nosyreva and
Huber, 2005; Zakharenko et al, 2002). As these forms of
mGluR LTD are still triggered postsynaptically, they must
involve a retrograde messenger, one leading candidate being
12-lipoxygenase metabolites of arachidonic acid (Feinmark
et al, 2003). In an attempt to reconcile the observations of a

presynaptic locus of expression of mGluR LTD with the
bulk of the literature describing a postsynaptic locus of
expression, a developmental shift in the mechanisms of
mGluR LTD has been proposed (Nosyreva and Huber,
2005). Specifically, it has been suggested that in slices
prepared from neonatal (P8–P15) animals, mGluR-LTD is
independent of protein synthesis and is due to a presynaptic
modification, whereas in older animals (P21–P35) mGluR
LTD is mediated by a protein synthesis-dependent reduc-
tion in the postsynaptic levels of AMPARs.

Endocannabinoid-Mediated LTD

A major advance over the last decade has been the
demonstration of the existence of endogenous cannabinoids
(termed endocannabinoids) and their roles in modulating
synaptic function (Chevaleyre et al, 2006; Freund et al, 2003;
Kreitzer and Regehr, 2002; Piomelli, 2003; Wilson and
Nicoll, 2002). It is now well established that in a number of
brain regions endocannabinoids are retrograde messengers
that are released by postsynaptic cells in response to strong
depolarization and/or activation of G-protein-coupled
receptors (eg, mGluRs and muscarinic receptors) and
function to transiently inhibit transmitter release (for
B0.5–1 min) at either excitatory or inhibitory synpases
via activation of presynaptic CB1 receptors.

Much of the mechanistic work on the transient synaptic
effects of endocannabinioids was performed in the hippo-
campus and cerebellum, synapses that are often thought to
be prototypic of synapses throughout the brain. It was
therefore surprising when a form of LTD that required
endocannabinoids, (so-called endocannabinoid-mediated
LTD; eCB-LTD) was observed in the glutamatergic synapses
onto medium spiny neurons in the striatum as well as at
synapses between layer V pyramidal neurons (Gerdeman
et al, 2002; Robbe et al, 2002a; Sjostrom et al, 2003). In the
hippocampus, in contrast, endocannabinoids mediate a
form of LTD at inhibitory, but not excitatory, synapses
(Chevaleyre and Castillo, 2004). In the dorsal striatum, eCB-
LTD requires postsynaptic activation of group I mGluRs,
L-type calcium channels and D2 dopamine receptors (Choi
and Lovinger, 1997; Kreitzer and Malenka, 2005, 2007;
Pisani et al, 2005; Sung et al, 2001; Tang et al, 2001)
(Figure 3). This leads to the production most likely of
anandamide (Ade and Lovinger, 2007), which activates
presynaptic CB1 receptors. However, prolonged activation
of these CB1 receptors alone is not sufficient to elicit eCB-
LTD; concomitant presynaptic activity is also required, a
requirement that likely accounts for the input specificity of
this form of plasticity (Singla et al, 2007). Another
important feature of eCB-LTD in the dorsal striatum is
that it appears to be restricted to the medium spiny neurons
that primarily express D2 dopamine receptors and is not
present at excitatory synapses on cells expressing D1
receptors (Kreitzer and Malenka, 2007; but see Wang
et al, 2006). This cell-restricted expression of eCB-LTD
may have important functional implications, a topic to be
discussed below.

In the nucleus accumbens (NAc), eCB-LTD also requires
postsynaptic activation of group I mGluRs and is modulated
by drugs of abuse (Fourgeaud et al, 2004; Mato et al, 2004;
Robbe et al, 2002b). In the cortex, eCB-LTD can be elicited

Synaptic plasticity
A Citri and RC Malenka

...............................................................................................................................................................

28

..............................................................................................................................................

Neuropsychopharmacology REVIEWS

REVIEW



by a spike-timing-dependent protocol (Sjostrom et al, 2003)
but does not depend on postsynaptic activation of mGluRs
and surprisingly, requires coincident activation of presy-
naptic NMDARs. LTD in the cerebellum was also reported
to depend on retrograde endocannabinoid signaling (Safo
and Regehr, 2005), but the mechanistic basis for this
observation is still unclear, since, as discussed above,
cerebellar LTD is expressed postsynaptically.

Metaplasticity

Metaplasticity refers to a higher-order form of synaptic
plasticity in which synaptic activity, which by itself does not
directly affect synaptic efficacy, leads to a persistent change
in the direction or magnitude of subsequent activity-
dependent synaptic plasticity. In other words, metaplasti-
city is the ‘plasticity of plasticity’ (Abraham and Bear, 1996;
Bear et al, 1987). The best-studied examples of metaplas-
ticity are those in which prior activity shifts the threshold
for LTP and LTD induction. For example, in the hippo-
campus, repetitive activation of NMDARs in a manner that
does not elicit LTP or LTD can nonetheless elicit a rapid
shift in plasticity thresholds such that LTP becomes difficult
to elicit and LTD induction is favored (Huang et al, 1992;
Wang and Wagner, 1999). A potential functional role for
metaplasticity has been demonstrated by modifying the
level of activity during the development of the visual cortex

in vivo (Philpot et al, 2001, 2003, 2007). This causes shifts in
the thresholds for LTP and LTD in cells in visual cortex
presumably due to changes in the stoichiometry of synaptic
NMDARs. As discussed below, such changes in synaptic
plasticity may importantly contribute to the experience-
dependent plasticity of ocular dominance following mani-
pulation of the visual environment.

Synaptic Scaling: A Form of Homeostatic
Plasticity

Theoretically, without additional stabilizing mechanisms,
activity-dependent forms of plasticity such as LTP and LTD
could drive neural circuit activity towards epileptogenic
excitation or complete quiescence. Synaptic scaling is
considered a form of homeostatic plasticity that counters
potentially maladaptive effects of long-term synapse-spe-
cific plasticity by globally affecting the transmission
through all synapses on a given neuron (Turrigiano and
Nelson, 2004). In terms of its basic properties and under-
lying mechanisms, this form of synaptic plasticity contrasts
dramatically with the forms of LTP and LTD we have
discussed thus far.

Synaptic scaling occurs when network activity is drama-
tically decreased or increased for prolonged (4B12–24 h)
periods of time. Decreased activity (due to blockade of
synaptic transmission or spiking) causes an increase in the
strength of all excitatory synapses onto excitatory neurons,
whereas increased activity (generally induced by partially
blocking inhibitory synapses) reduces the strength of all
excitatory synapses (Turrigiano et al, 1998). Importantly,
the relative strengths of individual synpases appear to be
maintained even though global synaptic input is signifi-
cantly altered.

Relatively little is known about the molecular mechan-
isms underlying synaptic scaling other than it involves
changes in the number of AMPARs (and NMDARs) at
individual synapses (Perez-Otano and Ehlers, 2005; Turri-
giano and Nelson, 2004; Watt et al, 2000) and likely
presynaptic changes as well (Burrone and Murthy, 2003;
Burrone et al, 2002). Recently, evidence has been presented
supporting a role for secreted factors in the induction of
homeostatic plasticity, suggesting that key triggers for this
form of plasticity may not be cell autonomous. Specifically,
secretion of the proinflammatory cytokine tumor necrosis
factor-a from glial cells appears to be necessary for the
increase in the level of synaptic AMPARs caused by
extended periods of activity blockade (Beattie et al, 2002;
Stellwagen et al, 2005; Stellwagen and Malenka, 2006). In
addition, there is evidence suggesting a role for secreted
BDNF in driving the opposite form of synaptic scaling; the
decrease in synaptic strengths caused by extended periods
of increased network acitivity (Rutherford et al, 1998;
Turrigiano, 2006).

FUNCTIONAL ROLES OF LTP AND LTD

Although LTP and LTD are prime candidate mechanisms
underlying many different forms of experience-dependent
plasticity, it is important to remember that they are
experimental phenomena used to examine how different

Ca2+

AMPAR

Postsynaptic 
cell

Presynaptic 
terminal

LTD

L-type VSCC

Lipid 
precursor

eCB
mGluR1/5

D2R

CB1R
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Figure 3 Model of eCB-LTD at excitatory synapses onto medium spiny
neurons in the striatum. Activation of postsynaptic type I mGluRs, along
with coincident subthreshold depolarization of medium spiny neurons
sufficient to activate L-type voltage-sensitive calcium channels (VSCCs),
stimulates the postsynaptic synthesis and release of endocannabinoids.
What enzyme generates the endocannabinoids is not known; one
candidate is PLCb. Co-activation of postsynaptic dopamine D2-type
receptors (D2R) enhances endocannabinoid production and the subse-
quent induction of presynaptic LTD, mediated through activation of
presynaptic CB1 receptors (CB1R). (From Kreitzer and Malenka, 2005.)
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patterns of activity can elicit bidirectional control over
synaptic strength. Establishing a causal connection between
a specific form of synaptic plasticity and the behavioral
consequences of specific experiences remains a daunting
task. Nevertheless, over the last decade, significant advances
have been made in connecting synaptic plasticity to a
number of different types of adaptive experience-dependent
plasticity. Furthermore, it has become increasingly clear
that understanding the mechanisms of synaptic plasticity
may provide important insights into the pathophysiology of
a variety of neuropsychiatric disorders and also point the
way toward novel therapeutic approaches. In the following
sections, we will briefly provide examples that demonstrate
that LTP and LTD do occur in vivo in response to
experience and may play a causal role in mediating the
consequences of experience.

Hippocampal-Dependent Plasticity and Learning

Given that LTP was first described in the hippocampus, a
structure well established to be critically important for
declarative memory (Squire et al, 2004), it is not surprising
that over the last three decades there has been a major effort
aimed at demonstrating a role for hippocampal LTP in
encoding new memories (Martin et al, 2000; Morris, 2006).
Correlations have been observed between defective hippo-
campal synaptic plasticity and defective hippocampal-
dependent memory tasks upon perturbation of a number
of proteins which function in synaptic plasticity, either
pharmacologically, or through gene knockout (Lynch, 2004;
Martin et al, 2000; Morris, 2006). For example, rodents in
which NMDAR antagonists were infused into the hippo-
campus (Morris and Frey, 1997), as well as mice lacking
expression of the NMDAR subunit NR1 in the forebrain
(Tsien et al, 1996), are defective both in LTP and certain
types of spatial learning. Furthermore, mice in which the
specific NMDAR subunit NR2B was overexpressed to
enhance NMDAR function were reported to display
enhanced LTP and enhanced spatial learning (Tang et al,
1999). Recently, more compelling evidence for a role of
synaptic plasticity in hippocampal-dependent learning has
been presented. During an inhibitory avoidance task, LTP
could be recorded in vivo in a subset of hippocampal CA1
pyramidal cells (Whitlock et al, 2006). This demonstrated
that the patterns of activity generated during a real learning
task were sufficient to elicit LTP. Perhaps even more
convincing was the demonstration that in vivo infusion of a
PKMz inhibitor into the hippocampus abolished the
maintenance of LTP and simultaneously the storage of a
long-lasting spatial memory (Pastalkova et al, 2006). These
findings strongly suggest that maintained LTP was required
for the engram that stored the key spatial information.

In addition to its role as a key component of the
mechanisms underlying the encoding of declarative mem-
ories, hippocampal NMDAR-dependent LTP (as well as
LTD) may provide important insights into the pathophy-
siology and potential treatment of major mental illnesses.
For example, a leading hypothesis for the pathophysiology
of schizophrenia posits a dysfunction in glutamatergic
synapses, in particular a hypofunction of NMDARs (Coyle
and Tsai, 2004; Javitt, 2006; McCullumsmith et al, 2004;
Tamminga, 1998). Thus, understanding the signaling events

downstream of NMDAR activation may provide important
insights into this devastating disease. A role for dysfunc-
tions in LTP and/or LTD mechanisms as possible con-
tributors to schizophrenia is also attractive in that
schizophrenia likely involves neurodevelopmental abnorm-
alities (Lewis and Levitt, 2002) and these phenomena play
an important role in the early postnatal development of
neural circuitry (see below). Indeed, genetic variation in
calcineurin, which is thought to play an important role in
NMDAR-dependent LTD, has been associated with schizo-
phrenia (Gerber et al, 2003).

Another example of the potential importance of studying
LTP and LTD comes from investigation into the therapeutic
mechanisms of drugs used to treat bipolar disorder. Drugs
such as lithium, valproate, and lamotrigine have been
reported to have significant effects on the phosphorylation
of AMPAR subunits and affect their surface expression (Du
et al, 2003, 2004, 2007; Gray et al, 2003). These findings
suggest that these drugs may somehow tap into the same
mechanisms that have evolved to generate LTP and LTD
and also point to novel approaches for the development of
new therapeutic agents that may prove efficacious for
treatment of this illness.

Experience-Dependent Plasticity in the
Developing Sensory Cortex

Sensory receptive fields in the cortex are modified by early
postnatal experience and the link between synaptic
plasticity and these forms of experience-dependent plasti-
city in sensory systems is becoming increasingly established
(Foeller and Feldman, 2004; Karmarkar and Dan, 2006;
Malenka and Bear, 2004). For example, a strong connection
between synaptic plasticity and experience-dependent
plasticity has been established in the visual system during
the shift in ocular dominance caused by monocular
deprivation (MD) (Foeller and Feldman, 2004; Karmarkar
and Dan, 2006; Malenka and Bear, 2004). MD induces
biochemical changes in AMPAR subunits in visual cortex
that appear identical to those elicited during NMDAR-
dependent LTD (Heynen et al, 2003) and visual cortical
slices obtained from monocularly deprived animals show
greatly reduced LTD (Crozier et al, 2007; Heynen et al,
2003), suggesting that LTD was elicited in vivo. Further-
more, in vivo recordings demonstrated that MD caused a
rapid decrease in the visually evoked potential (VEP) from
the deprived eye and a slower enhancement of the VEP from
the open eye (Frenkel and Bear, 2004). Importantly,
completely blocking activity in the deprived eye prevented
the depression of the VEP demonstrating that this depres-
sion required retinal activity and, like LTD, was therefore
activity-dependent (Frenkel and Bear, 2004).

Similar results have been obtained in somatosensory
barrel cortex in that sensory deprivation by whisker
trimming or plucking causes a weakening of synaptic
responses in layer 2/3 cells and an occlusion of LTD (Allen
et al, 2003). This appears to be due to alterations in the
patterns of pre- and postsynaptic spiking in vivo in a
manner that is ideal for generating spike-timing-dependent
LTD (Celikel et al, 2004). LTP mechanisms, on the other
hand, appear to be important for the strengthening of
synapses in developing barrel cortex due to early postnatal
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experience. In vivo experience drives recombinant GluR1
into barrel cortex synapses in a manner similar to that
which occurs during NMDAR-dependent LTP, whereas
expression of a short peptide that inhibits delivery of
endogenous AMPARs blocks the experience-dependent
increase in synaptic strength (Takahashi et al, 2003) as
does a dominant-negative form of the synaptic scaffold
protein PSD-95 (Ehrlich and Malinow, 2004). Thus, as
predicted by theoretical considerations (Bienenstock et al,
1982; Stent, 1973), LTP and LTD mechanisms appear to be
critically involved in early neural circuit development and it
is not difficult to imagine how disruption in these
mechanisms might contribute to a host of neurodevelope-
mental disorders such as autism (Geschwind and Levitt,
2007; Rubenstein and Merzenich, 2003).

Synaptic Plasticity and Fear Conditioning

Pavlovian fear conditioning is a form of associative memory
that depends on the amygdala for its induction and
maintenance (Sigurdsson et al, 2007). It occurs when a
neutral stimulus (such as a tone) is temporally paired with a
strong noxious stimulus (such as an electric shock) creating
a memory trace, the consequences of which are that the
neutral stimulus elicits the learned fear response. Consider-
able evidence is consistent with the hypothesis that LTP at
sensory inputs to the lateral nucleus of the amygdala is
necessary and perhaps sufficient for establishing this
engram (Sigurdsson et al, 2007). NMDAR-dependent LTP
can be induced at cortical and thalamic inputs into the
lateral amygdala, both in vitro and in vivo. Importantly, fear
conditioning induces synaptic potentiation at these sy-
napses, and this increase in synaptic strength occludes
further induction of LTP (McKernan and Shinnick-Galla-
gher, 1997; Rogan et al, 1997; Tsvetkov et al, 2002). Like
NMDAR-dependent LTP in the hippocampus, fear con-
ditioning has also been shown to lead to the insertion of
new AMPARs at thalamic input synapses onto lateral
amygdala neurons (Rumpel et al, 2005) and perhaps most
convincingly, expression of a peptide that prevents the LTP-
induced incorporation of AMPARs at synapses abolished
acquisition of this form of associative memory (Rumpel
et al, 2005).

NMDARs in the amgydala are also involved in the
extinction of learned fear, which can be conceptualized as a
different form of learning (Myers and Davis, 2002).
Furthermore, acute treatment with D-cycloserine, a partial
agonist of NMDARs, enhances the learning processes that
are responsible for fear extinction via actions in the
amygdala (Walker et al, 2002). On the basis of these
observations, clinical trials have been initiated using D-
cycloserine in combination with behavioral therapy to
enhance the extinction of fear in phobic patients (Hofmann
et al, 2006; Otto et al, 2007; Ressler et al, 2004). Results to
date suggest that the administration of D-cycloserine either
before or shortly after exposure to fearful cues does in fact
enhance the extinction of the anxiety previously associated
with specific cues. Thus, the study of the neural substrates
of learned fear and its extinction is a compelling example of
how research on the mechanisms of synaptic plasticity has
directly led to a potential novel treatment for common
psychiatric disorders.

Synaptic Plasticity in Dopamine Circuits

The defining characteristic of drug addiction is persistent
and compulsive seeking and ingestion of drugs despite
adverse consequences. Over the last decade, a leading
hypothesis has been that an important neural substrate
of addiction, in particular relapse, is long-term
associative memory processes occurring in several neural
circuits that receive input from midbrain dopamine
neurons (Everitt and Robbins, 2005; Hyman et al, 2006).
In other words, it is thought that addictive drugs can usurp
the normal adaptive mechanisms underlying reward-based
learning.

The most well-established key site of action of addictive
drugs is the mesolimbic dopamine system consisting of the
VTA and the NAc. Excitatory synaptic transmission in these
structures is critical for mediating several forms of long-
lasting, drug-induced behavioral plasticity (Everitt and
Wolf, 2002; Hyman and Malenka, 2001). It, therefore, has
been reasonable to hypothesize that plasticity at these
synapses plays an important role in mediating some of the
behavioral consequences of exposure to drugs of abuse
(Wolf, 1998).

Indeed, it is now established that various forms of LTP
and LTD can be elicited at excitatory synapses in the VTA
and NAc (Gerdeman et al, 2003; Kauer, 2004; Kelley, 2004;
Thomas and Malenka, 2003). Furthermore, administration
of a single dose of several different classes of drugs of abuse
causes a significant increase in synaptic strength at
excitatory synapses onto dopamine cells in the VTA (Faleiro
et al, 2004; Saal et al, 2003; Ungless et al, 2001). This
increase shares mechanisms with LTP in the VTA and
appears to involve upregulation of AMPARs (Ungless et al,
2001). This drug-induced ‘LTP’ appears to play a functional
role in triggering or mediating some drug-induced beha-
vioral adaptations, as both conditioned place preference
and behavioral sensitization are blocked by injection of
glutamate receptor antagonists into the VTA (Harris and
Aston-Jones, 2003; Vanderschuren and Kalivas, 2000). In
addition, conditioned place preference, as well as the
synaptic potentiation that is observed following cocaine
administration, are impaired in GluR1 knockout mice
(Dong et al, 2004), with the caveat that these mice still
exhibit robust behavioral sensitization in response to
repeated exposure to psychostimulants (Dong et al, 2004;
Vekovischeva et al, 2001).

While drugs of abuse have been observed to induce LTP
in the VTA, LTD has been observed in the NAc following
chronic in vivo cocaine administration (Thomas et al,
2001). Consistent with a functional role for this LTD in
addiction, injection of glutamate receptor antagonists into
the NAc abolishes the expression of behavioral sensitization
(Kelley, 2004). Furthermore, amphetamine-induced beha-
vioral sensitization and LTD in the NAc were both abolished
by injection into the NAc of inhibitors of AMPAR
endocytosis (Brebner et al, 2005). Interestingly, overexpres-
sion of GluR1 in the NAc (mimicking an ‘LTP’-like
condition) facilitates the extinction of cocaine-seeking
(Sutton et al, 2003) and even makes cocaine aversive in a
conditioned place preference assay (Kelz et al, 1999).
Recently, it has also been reported that cocaine self-
administration abolishes the ability to induce LTD in the
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core of the NAc after prolonged (21 days) abstinence
(Martin et al, 2006) and in vivo administration of
tetrahydrocannabinol (THC) or cocaine impairs the gene-
ration of eCB-LTD (Fourgeaud et al, 2004; Mato et al, 2004;
Robbe et al, 2002b). Thus, drugs of abuse may elicit certain
forms of synaptic plasticity in specific circuits while
simultaneously impairing plasticity in other circuits.

Synaptic plasticity in the dorsal striatum has also been
correlated with certain learned behaviors, in particular in
motor control (Gubellini et al, 2004; Pisani et al, 2005). In
this context, it is important to note that two independent
striatal circuits are thought to exist, the so-called ‘direct’
and ‘indirect’ pathways, which subserve different functions
in motor control (Bolam et al, 2000). Indirect pathway
medium spiny neurons (MSNs) project to the lateral globus
pallidus and primarily express D2 dopamine receptors while
direct pathway MSNs project to the substantia nigra and
express D1 dopamine receptors. As mentioned in the
section on eCB-LTD, this form of plasticity is primarily
restricted to the indirect pathway MSNs and is absent in
Parkinson’s disease models (Kreitzer and Malenka, 2007).
However, in slices from dopamine-depleted animals,
indirect pathway eCB-LTD can be rescued by a D2 receptor
agonist or pharmacological inhibitors of endocannabinoid
degradation. Remarkably, administration of these drugs
together in vivo dramatically reduces Parkinsonian motor
deficits suggesting that endocannabinoid-mediated depres-
sion of indirect pathway synapses has a critical role in
motor control and may be a valuable target for therapy of
striatal-based brain disorders (Kreitzer and Malenka, 2007).
This works also points out the potential power of examining
the mechanisms of synaptic plasticity and placing them in
the context of the neural circuits in which they are found.

Future Directions

We have attempted to briefly review the enormous field of
synaptic plasticity research in a concise and accessible
manner so that by the end of this article, readers will have a
reasonably up to date knowledge of current thinking about
the mechanisms underlying the major forms of synaptic
plasticity in the mammalian brain and a sense of what their
in vivo functions might be. By necessity we have had to
leave out important topics such as how synaptic activity
modulates NMDAR-mediated synaptic responses (eg, Mor-
ishita et al, 2005), inhibitory synaptic responses (Chevaleyre
et al, 2006), or the intrinsic excitability of neurons (Xu and
Kang, 2005; Zhang and Linden, 2003), all of which will have
profound effects on neural circuit function. Furthermore,
several compelling examples that correlate long-term
synaptic plasticity with experience-dependent modifications
in behavior have been left out, such as the role of cerebellar
LTD in motor learning (Boyden et al, 2004; Ito, 2002;
Jorntell and Hansel, 2006).

This review should also make clear that while extensive
progress has been made, much remains unknown. Even for
the most established forms of plasticity, NMDAR-depen-
dent LTP and LTD in the CA1 region of the hippocampus,
we still know little about the details of the signal
transduction pathways triggering these forms of plasticity
and which specific proteins are being modified to cause the
changes in synaptic efficacy. We also know little about the

molecular mechanisms underlying the structural changes in
synapses that seem to accompany LTP and LTD. With the
accumulation of evidence demonstrating that long-term
synaptic modifications do in fact play important roles in a
host of adaptive brain functions, we believe there is strong
justification to continue efforts toward establishing the
detailed molecular basis of the various forms of synaptic
plasticity. This is particularly important because, as we have
tried to make clear, such knowledge is likely to have a major
impact on our understanding and treatment of a wide range
of brain disorders.

What direction do we envision the field taking in the near
future? By definition, synaptic plasticity is an electrophy-
siological phenomenon. Only by recording synaptic re-
sponses can the investigator be sure that synaptic function
has been modified. Until relatively recently, most electro-
physiological studies depended on pharmacological manip-
ulations of proteins, an approach that was aided by the use
of genetically modified mice. Thus far, gene knockout
experiments addressing the function of B200 genes have
been reported and close to 80% of these report effects on
synaptic transmission or plasticity (Grant, 2006). With the
growing consensus that NMDAR-dependent LTP is primar-
ily mediated by an increase in postsynaptic AMPARs, while
LTD is associated with loss of AMPARs from the PSD, there
also has been an increased contribution of cell biologists
who have focused on the molecular mechanisms underlying
the changes in the levels of postsynaptic receptors as well as
the changes in synaptic structure that occur. Indeed, a close
interdependence has emerged between electrophysiologists
and cell biologists and this has dramatically impacted the
field. Thus, electrophysiologists are increasingly making use
of tools that enable overexpression, knockdown, and
molecular replacement of target proteins both in vitro and
in vivo (eg, Schluter et al, 2006). These advances are
enabling a true molecular dissection of the mechanisms
underlying plasticity of mammalian brain synapses.

Recent advances in high-throughput technologies, such as
gene-chip microarrays for mRNA profiling and advanced
mass spectrometry for identification of multiple proteins in
a mixed population, have enabled the identification of the
molecular components of many biological phenomena and
contributed significantly to understanding their regulation.
Furthermore, the recent advent of ‘systems biology’ has
contributed a number of conceptual advances that enable
clearer interpretation of the complex interaction networks
observed in signal transduction cascades (Alon, 2006).
These advances have so far only lightly impacted the field of
synaptic plasticity (Pocklington et al, 2006), but we envision
that they will have increasing influence in the near future,
despite the technical difficulties that are encountered when
trying to apply these approaches to the inherently complex
preparations used in the study of synaptic plasticity.

What might we gain from such studies? A clearer picture
of the molecules which participate in the processes under-
lying the different forms of synaptic plasticity, and the
dynamics of their activation and interactions, would enable
the formulation of much more sophisticated models of the
events underlying the triggering, expression, and main-
tenance of specific forms of synaptic plasticity. This in turn
would create a strong foundation for focused efforts aimed
at identifying the central pathways mediating synaptic
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plasticity and assaying their relevance to the phenomenon
measured electrophysiologically.

By combining electrophysiological, molecular, cell biolo-
gical and proteomic approaches, we envision that the next
few decades will bring further clarification of the detailed
molecular mechanisms underlying the major forms of
synaptic plasticity that we have discussed in this review.
The use of more sophisticated molecular and genetic
manipulations, in particular, the development of mouse
lines with highly restricted expression of transgenes that
can be turned on or off with fine temporal control, will
simultaneously facilitate the examination of the neural
circuit basis of behavior. Together, we believe these
approaches will allow sophisticated manipulation of synap-
tic plasticity mechanisms in highly restricted neural circuits
and thereby greatly advance our understanding of how
synaptic plasticity mediates both adaptive and pathological
experience-dependent plasticity. Applying these same ap-
proaches to disease models should yield new insights into
the molecular pathology of diseases of the synapse such as
addiction, schizophrenia, and Alzheimer’s diseases and also
pave the way toward the development of novel and more
efficacious treatments.
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